全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Mutations and short geodesics in hyperbolic 3-manifolds

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we explicitly construct large classes of incommensurable hyperbolic knot complements with the same volume and the same initial (complex) length spectrum. Furthermore, we show that these knot complements are the only knot complements in their respective commensurabiltiy classes by analyzing their cusp shapes. The knot complements in each class differ by a topological cut-and-paste operation known as mutation. Ruberman has shown that mutations of hyperelliptic surfaces inside hyperbolic 3-manifolds preserve volume. Here, we provide geometric and topological conditions under which such mutations also preserve the initial (complex) length spectrum. This work requires us to analyze when least area surfaces could intersect short geodesics in a hyperbolic 3-manifold.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133