全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Real submanifolds of maximum complex tangent space at a CR singular point

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study a germ of real analytic $n$-dimensional submanifold of ${\mathbf C}^n$ that has a complex tangent space of maximal dimension at a CR singularity. Under the condition that its complexification admits the maximum number of deck transformations, we study its transformation to a normal form under the action of local (possibly formal) biholomorphisms at the singularity. We first conjugate formally its associated reversible map $\sigma$ to suitable normal forms and show that all these normal forms can be divergent. If the singularity is {\it abelian}, we show, under some assumptions on the linear part of $\sigma$ at the singularity, that the real submanifold is holomorphically equivalent to an analytic normal form. We also show that if a real submanifold is formally equivalent to a quadric, it is actually holomorphically equivalent to it, if a small divisors condition is satisfied. Finally, we prove that, in general, there exists a complex submanifold of positive dimension in ${\mathbf C}^n$ that intersects a real submanifold along two totally and real analytic submanifolds that intersect transversally at a CR singularity of the {\it complex type}.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133