全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Dynamical behavior of a system modeling wave bifurcations with higher order viscosity

Full-Text   Cite this paper   Add to My Lib

Abstract:

We rigorously show that a class of systems of partial differential equations modeling wave bifurcations supports stationary equivariant bifurcation dynamics through deriving its full dynamics on the center manifold(s). A direct consequence of our result is that the oscillations of the dynamics are \textit{not} due to rotation waves though the system exhibits Euclidean symmetries. The main difficulties of carrying out the program are: 1) the system under study contains multi bifurcation parameters and we do not know \textit{a priori} how they come into play in the bifurcation dynamics. 2) the representation of the linear operator on the center space is a $2\times 2$ zero matrix, which makes the characteristic condition in the well-known normal form theorem trivial. We overcome the first difficulty by using projection method. We managed to overcome the second subtle difficulty by using a conjugate pair coordinate for the center space and applying duality and projection arguments. Due to the specific complex pair parametrization, we could naturally get a form of the center manifold reduction function, which makes the study of the current dynamics on the center manifold possible. The symmetry of the system plays an essential role in excluding the possibility of bifurcating rotation waves.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133