全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Pointwise convergence of multiple ergodic averages and strictly ergodic models

Full-Text   Cite this paper   Add to My Lib

Abstract:

By building some suitable strictly ergodic models, we prove that for an ergodic system $(X,\mathcal{X},\mu, T)$, $d\in{\mathbb N}$, $f_1, \ldots, f_d \in L^{\infty}(\mu)$, the averages $$\frac{1}{N^2} \sum_{(n,m)\in [0,N-1]^2} f_1(T^nx)f_2(T^{n+m}x)\ldots f_d(T^{n+(d-1)m}x) $$ converge $\mu$ a.e. Deriving some results from the construction, for distal systems we answer positively the question if the multiple ergodic averages converge a.e. That is, we show that if $(X,\mathcal{X},\mu, T)$ is an ergodic distal system, and $f_1, \ldots, f_d \in L^{\infty}(\mu)$, then multiple ergodic averages $$\frac 1 N\sum_{n=0}^{N-1}f_1(T^nx)\ldots f_d(T^{dn}x) $$ converge $\mu$ a.e.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133