全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Arcs, balls and spheres that cannot be attractors in $\mathbb{R}^3$

Full-Text   Cite this paper   Add to My Lib

Abstract:

For any compact set $K \subseteq \mathbb{R}^3$ we define a number $r(K)$ that is either a nonnegative integer or $\infty$. Intuitively, $r(K)$ provides some information on how wildly $K$ sits in $\mathbb{R}^3$. We show that attractors for discrete or continuous dynamical systems have finite $r$ and then prove that certain arcs, balls and spheres cannot be attractors by showing that their $r$ is infinite.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133