全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Distributed Block Coordinate Descent for Minimizing Partially Separable Functions

DOI: 10.1007/978-3-319-17689-5_11

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work we propose a distributed randomized block coordinate descent method for minimizing a convex function with a huge number of variables/coordinates. We analyze its complexity under the assumption that the smooth part of the objective function is partially block separable, and show that the degree of separability directly influences the complexity. This extends the results in [Richtarik, Takac: Parallel coordinate descent methods for big data optimization] to a distributed environment. We first show that partially block separable functions admit an expected separable overapproximation (ESO) with respect to a distributed sampling, compute the ESO parameters, and then specialize complexity results from recent literature that hold under the generic ESO assumption. We describe several approaches to distribution and synchronization of the computation across a cluster of multi-core computers and provide promising computational results.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133