全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Scaling-rotation distance and interpolation of symmetric positive-definite matrices

Full-Text   Cite this paper   Add to My Lib

Abstract:

We introduce a new geometric framework for the set of symmetric positive-definite (SPD) matrices, aimed to characterize deformations of SPD matrices by individual scaling of eigenvalues and rotation of eigenvectors of the SPD matrices. To characterize the deformation, the eigenvalue-eigenvector decomposition is used to find alternative representations of SPD matrices, and to form a Riemannian manifold so that scaling and rotations of SPD matrices are captured by geodesics on this manifold. The problems of non-unique eigen-decompositions and eigenvalue multiplicities are addressed by finding minimal-length geodesics, which gives rise to a distance and an interpolation method for SPD matrices. Computational procedures to evaluate the minimal scaling--rotation deformations and distances are provided for the most useful cases of $2 \times 2$ and $3 \times 3$ SPD matrices. In the new geometric framework, minimal scaling--rotation curves interpolate eigenvalues at constant logarithmic rate, and eigenvectors at constant angular rate. In the context of diffusion tensor imaging, this results in better behavior of the trace, determinant and fractional anisotropy of interpolated SPD matrices in typical cases.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133