全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Peeling potatoes near-optimally in near-linear time

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the following geometric optimization problem: find a convex polygon of maximum area contained in a given simple polygon $P$ with $n$ vertices. We give a randomized near-linear-time $(1-\varepsilon)$-approximation algorithm for this problem: in $O((n/\varepsilon^4) \log^2 n \log(1/\delta))$ time we find a convex polygon contained in $P$ that, with probability at least $1-\delta$, has area at least $(1-\varepsilon)$ times the area of an optimal solution.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133