全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Application of Nontraditional Optimization Techniques for Airfoil Shape Optimization

DOI: 10.1155/2012/636135

Full-Text   Cite this paper   Add to My Lib

Abstract:

The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic algorithm (GA), simulated annealing (SA), and particle swarm optimization (PSO), are more widely employed to solve the aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an important factor to be considered during the aerodynamic shape optimization process. The objective of this work is to introduce the knowledge of describing general airfoil geometry using twelve parameters by representing its shape as a polynomial function and coupling this approach with flow solution and optimization algorithms. An aerodynamic shape optimization problem is formulated for NACA 0012 airfoil and solved using the methods of simulated annealing and genetic algorithm for 5.0?deg angle of attack. The results show that the simulated annealing optimization scheme is more effective in finding the optimum solution among the various possible solutions. It is also found that the SA shows more exploitation characteristics as compared to the GA which is considered to be more effective explorer. 1. Introduction The computational resources and time required to solve a given problem have always been a problem for engineers for a long time though a sufficient amount of growth is achieved in the computational power in the last thirty years. This becomes more complicated to deal with when the given problem is an optimization problem which requires huge amount of computational simulations. These kinds of problems have been one of the important problems to be addressed in the context of design optimization for quite some years. When the number of result(s) influencing variables are large in a given optimization problem, the required computational time per simulation increases automatically. This will severely influence the required computational resources to solve the given design optimization problem. Due to this reason, a need arises to describe a general geometry with minimum number of design variables. This leads to a search activity of finding some of the best parameterization methods. Nowadays, various parameterization methods are employed: partial differential equation approach (time consuming and not suitable for multidisciplinary design optimization), discrete points approach (the number of design variables becomes large), and polynomial approach (the number of design

References

[1]  P. Castonguay and S. K. Nadarajah, “Effect of shape parameterization on aerodynamic shape optimization,” in Proceedings of the 45th Aerospace Sciences Meeting and Exhibit (AIAA '07), pp. 561–580, January 2007.
[2]  R. Balu and V. Ashok, Airfoil shape optimization using paras-3D software and genetic algorithm VSSC/ARD/TR/095/2006, Vikram Sarabhai Space Centre, Kerala, India, 2006.
[3]  G. S. Avinash and S. A. Lal, Inverse Design of Airfoil Using Vortex Element Method, Department of Mechanical Engineering, College of Engineering, Thiruvananthapuram, Kerala, India, 2010.
[4]  R. Balu and U. Selvakumar, “Optimum hierarchical Bezier parameterization of arbitrary curves and surfaces,” in Proceedings of the 11th Annual CFD Symposium, pp. 46–48, Indian Institute of Science, Bangalore, India, August 2009.
[5]  H. Sobieczky, Parametric Airfoils and Wings, vol. 68 of Notes on Numerical Fluid Mechanics, Vieweg, 1998.
[6]  J. L. Hess, “Panel methods in computational fluid dynamics,” Annual Review of Fluid Mechanics, vol. 22, no. 1, pp. 255–274, 1990.
[7]  J. Katz and A. Plotkin, Low-Speed Aerodynamics from Wing Theory to Panel Methods, McGraw-Hill, New York, NY, USA, 1991.
[8]  B. Behzadi, C. Ghotbi, and A. Galindo, “Application of the simplex simulated annealing technique to nonlinear parameter optimization for the SAFT-VR equation of state,” Chemical Engineering Science, vol. 60, no. 23, pp. 6607–6621, 2005.
[9]  Margarida, F. Cardoso, R. L. Salcedo, and S. F. De Azevedo, “The simplex-simulated annealing approach to continuous non-linear optimization,” Computers and Chemical Engineering, vol. 20, no. 9, pp. 1065–1080, 1996.
[10]  N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.
[11]  S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
[12]  D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Mass, USA, 1989.
[13]  R. Mukesh and U. Selvakumar, “Aerodynamic Shape Optimization using Computer Mapping of Natural Evolution Process,” in Proceedings of the International Conference on Mechanical and Aerospace Engineering at University of Electronics Science and Technology of China, vol. 5, pp. 367–371, April 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133