全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antitumour Effects of Isocurcumenol Isolated from Curcuma zedoaria Rhizomes on Human and Murine Cancer Cells

DOI: 10.1155/2011/253962

Full-Text   Cite this paper   Add to My Lib

Abstract:

Curcuma zedoaria belonging to the family Zingiberaceae has been used in the traditional system of medicine in India and Southwest Asia in treating many human ailments and is found to possess many biological activities. The rationale of the present study was to isolate, identify, and characterize antitumour principles from the rhizomes of Curcuma zedoaria, to assess its cytotoxic effects on human and murine cancer cells, to determine its apoptosis inducing capacity in cancer cells, and to evaluate its tumour reducing properties in in vivo mice models. Isocurcumenol was characterized as the active compound by spectroscopy and was found to inhibit the proliferation of cancer cells without inducing significant toxicity to the normal cells. Fluorescent staining exhibited the morphological features of apoptosis in the compound-treated cancer cells. In vivo tumour reduction studies revealed that a dose of 35.7?mg/kg body weight significantly reduced the ascitic tumour in DLA-challenged mice and increased the lifespan with respect to untreated control mice. 1. Introduction Plants have been a source of medicine for thousands of years, and phytochemicals continue to play an essential role in medicine [1]. Several of the current chemotherapeutic drugs like vinblastine, methotrexate, taxol, and so forth, were first identified in plants. In developing countries, the practice of medicine still relies heavily on plant and herbal extracts for the treatment of human ailments. Dietary agents consist of a wide variety of biologically active compounds that are ubiquitous in plants, and many of them have been used as traditional medicines [2–4]. Some phytochemicals derived in spices and herbs as well as other plants possess substantial cancer preventive properties [5–10]. Plants of ginger family (Zingiberaceae) have been frequently and widely used as spices and in traditional systems of medicine practiced in many Asian countries, and their medicinal functions have been broadly discussed and accepted in many traditional recipes [11]. The Zingiberaceae plants contain a number of volatile and essential oils including terpenoids, phenylpropanoids, flavonoids, and sesquiterpenes, which has reported antitumour activity [12–14]. As plants of Zingiberaceae family are considered safe for human consumption, these species are excellent candidates for development of novel chemotherapeutics [15]. Traditionally, curcuma drugs called “Ukon” and “Gajutsu” in Japanese have been used in oketsu syndromes (caused by the obstruction of blood circulation) in Chinese medicine [16]. Various

References

[1]  B. B. Aggarwal, A. Kumar, and A. C. Bharti, “Anticancer potential of curcumin: preclinical and clinical studies,” Anticancer Research, vol. 23, no. 1A, pp. 363–398, 2003.
[2]  B. B. Aggarwal and S. Shishodia, “Suppression of the nuclear factor-κB activation pathway by spice-derived phytochemicals: reasoning for seasoning,” Annals of the New York Academy of Sciences, vol. 1030, pp. 434–441, 2004.
[3]  B. B. Aggarwal and S. Shishodia, “Molecular targets of dietary agents for prevention and therapy of cancer,” Biochemical Pharmacology, vol. 71, no. 10, pp. 1397–1421, 2006.
[4]  M. K. Singhal, “Jungles: rich sources of medicinal plants,” Natural Product Radiance, vol. 3, p. 203, 2004.
[5]  P. K. Lai and J. Roy, “Antimicrobial and chemopreventive properties of herbs and spices,” Current Medicinal Chemistry, vol. 11, no. 11, pp. 1451–1460, 2004.
[6]  Y. J. Surh, “Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances,” Mutation Research, vol. 428, no. 1-2, pp. 305–327, 1999.
[7]  Y. J. Surh, K. K. Park, K. S. Chun, J. M. Lee, E. Lee, and S. S. Lee, “Anti-tumor- promoting activities of selected pungent phenolic substances present in ginger,” Journal of Environmental Pathology, Toxicology and Oncology, vol. 18, no. 2, pp. 131–139, 1999.
[8]  Y. J. Surh, “Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review,” Food and Chemical Toxicology, vol. 40, no. 8, pp. 1091–1097, 2002.
[9]  Y. J. Surh, “Cancer chemoprevention with dietary phytochemicals,” Nature Reviews Cancer, vol. 3, no. 10, pp. 768–780, 2003.
[10]  Y. J. Surh, E. Lee, and J. M. Lee, “Chemoprotective properties of some pungent ingredients present in red pepper and ginger,” Mutation Research, vol. 402, no. 1-2, pp. 259–267, 1998.
[11]  N. Chen and S. J. Zhao, “Radioprotection related activities of medicinal plant,” Zhongguo Zhongyao Zazhi, vol. 32, no. 13, pp. 1263–1266, 2007.
[12]  K. S. Kim, J. M. Paik, and W. I. Hwang, “Determination of antitumor effects of extracts from Korean medicinal plants on cancer cells,” Korea University Medical Journal, vol. 25, no. 3, pp. 759–769, 1988.
[13]  E. Y. C. Lai, C. C. Chyau, J. L. Mau et al., “Antimicrobial activity and cytotoxicity of the essential oil of Curcuma zedoaria,” American Journal of Chinese Medicine, vol. 32, no. 2, pp. 281–290, 2004.
[14]  E. J. Lien and W. Li, in Advances in Chinese Medical Materials Research, vol. 5, pp. 433–452, 1985.
[15]  C. E. Ficker, M. L. Smith, S. Susiarti, D. J. Leaman, C. Irawati, and J. T. Arnason, “Inhibition of human pathogenic fungi by members of Zingiberaceae used by the Kenyah (Indonesian Borneo),” Journal of Ethnopharmacology, vol. 85, no. 2-3, pp. 289–293, 2003.
[16]  S. Z. Li, “Ben-cao gung-mu,” in Jiangxi (ed), vol. 2, pp. 880–885, The People's Health Pub, House, Beijing, China, 1977.
[17]  K. S. Chun, Y. Sohn, H. S. Kim et al., “Anti-tumor promoting potential of naturally occurring diarylheptanoids structurally related to curcumin,” Mutation Research, vol. 428, no. 1-2, pp. 49–57, 1999.
[18]  M. A. Kuhn and D. Wintston, Herbal Therapy and Supplements: A Scientific and Traditional Approach, Lippincott, New York, NY, USA, 2001.
[19]  K. H. Lee, “Antineoplastic compounds and their analogues from Chinese traditional medicine,” Journal of the American Chemical Society, vol. 3, pp. 170–190, 1993.
[20]  H. W. D. Matthes, B. Luu, and G. Ourisson, “Cytotoxic components of Zingiber zerumbet, Curcuma zedoaria and C. domestica,” Phytochemistry, vol. 19, no. 12, pp. 2643–2650, 1980.
[21]  M. Nagabhushan and S. V. Bhide, “Curcumin as an inhibitor of cancer,” Journal of the American College of Nutrition, vol. 11, no. 2, pp. 192–198, 1992.
[22]  R. Lobo, K. S. Prabhu, A. Shirwaikar, and A. Shirwaikar, “Curcuma zedoaria Rosc, (white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties,” Journal of Pharmacy and Pharmacology, vol. 61, no. 1, pp. 13–21, 2009.
[23]  N. Saikia and S. C. Nath, “Ethnobotanical observations of some species of the genus Curcuma L. growing in Assam,” Journal of Economic and Taxonomic Botany, vol. 27, pp. 430–433, 2003.
[24]  M. K. Jang, D. H. Sohn, and J. H. Ryu, “A curcuminoid and sesquiterpenes as inhibitors of macrophage TNF-α release from Curcuma zedoaria,” Planta Medica, vol. 67, no. 6, pp. 550–552, 2001.
[25]  T. Yoshioka, E. Fujii, M. Endo et al., “Antiinflammatory potencg of dehydrocurdione, a zedoary-derived sesquiterpene,” Inflammation Research, vol. 47, no. 12, pp. 476–481, 1998.
[26]  S. K. Gupta, A. B. Banerjee, and B. Achari, “Isolation of ethyl p-methoxycinnamate, the major antifungal principle of Curcuma zedoaria,” Lloydia, vol. 39, no. 4, pp. 218–222, 1976.
[27]  K. Watanabe, M. Shibata, and S. Yano, “Antiulcer activity of extracts and isolated compounds from Zedoary (Gajutsu) cultivated in Yakushima (Japan),” Yakugaku Zasshi, vol. 106, no. 12, pp. 1137–1142, 1986.
[28]  B. Wilson, G. Abraham, V. S. Manju et al., “Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers,” Journal of Ethnopharmacology, vol. 99, no. 1, pp. 147–151, 2005.
[29]  A. Bugno, M. Aparecida, N. Adriana, et al., “Antimicrobial efficacy of Curcuma zedoaria extract as assessed by linear regression compared with commercial mouthrinses,” Brazilian Journal of Microbiology, vol. 38, pp. 1517–8382, 2007.
[30]  H. Matsuda, K. Ninomiya, T. Morikawa, and M. Yoshikawa, “Inhibitory effect and action mechanism of sesquiterpenes from zedoariae rhizoma on D-galactosamine/lipopolysaccharide-induced liver injury,” Bioorganic and Medicinal Chemistry Letters, vol. 8, no. 4, pp. 339–344, 1998.
[31]  A. C. Rana and Y. Avadhoot, “Experimental evaluation of hepatoprotective activity of Gymnema sylvestre and Curcuma zedoaria,” Fitoterapia, vol. 63, no. 1, pp. 60–62, 1992.
[32]  M. H. Ansari and S. Ahmad, “Curcuma zedoaria root extract: in vitro demonstration of antiamoebic activity,” Biomedical Research, vol. 2, no. 2, pp. 192–196, 1991.
[33]  O. J. Oh, H. Y. Min, and S. K. Lee, “Inhibition of inducible prostaglandin E2 production and cyclooxy-genase-2 expression by curdione from Curcuma zedoaria,” Archives of Pharmacal Research, vol. 30, no. 10, pp. 1226–1239, 2007.
[34]  W. J. Syu, C. C. Shen, M. J. Don, J. C. Ou, G. H. Lee, and C. M. Sun, “Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria,” Journal of Natural Products, vol. 61, no. 12, pp. 1531–1534, 1998.
[35]  H. H. Chae, S. N. Min, Y. L. Woo, and K. L. Sang, “Inhibitory effects of natural sesquiterpenoids isolated from the rhizomes of Curcuma zedoaria on prostaglandin E and nitric oxide production,” Planta Medica, vol. 68, no. 6, pp. 545–547, 2002.
[36]  Y. Shiobara, Y. Asakawa, M. Kodama, K. Yasuda, and T. Takemoto, “Curcumenone, curcumanolide A and curcumanolide B, three sesquiterpenoids from Curcuma zedoaria,” Phytochemistry, vol. 24, no. 11, pp. 2629–2633, 1985.
[37]  K. I. Kim, J. W. Kim, B. S. Hong et al., “Antitumor, genotoxicity and anticlastogenic activities of polysaccharide from Curcuma zedoaria,” Molecules and Cells, vol. 10, no. 4, pp. 392–398, 2000.
[38]  K. I. Kim, K. S. Shin, W. J. Jun et al., “Effects of polysaccharides from rhizomes of Curcuma zedoaria on macrophage functions,” Bioscience, Biotechnology and Biochemistry, vol. 65, no. 11, pp. 2369–2377, 2001.
[39]  C. B. Lim, N. Ky, H. M. Ng, M. S. Hamza, and Y. Zhao, “Curcuma wenyujin extract induces apoptosis and inhibits proliferation of human cervical cancer cells in vitro and in vivo,” Integrative cancer therapies, vol. 9, no. 1, pp. 36–49, 2010.
[40]  D. A. Scudiero, R. H. Shoemaker, K. D. Paull et al., “Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines,” Cancer Research, vol. 48, no. 17, pp. 4827–4833, 1988.
[41]  M. Kirsh Volders, A. Elhajouji, E. Cundari, and P. Van Hummelen, “The invitro micronuclear test: a multi-endpoint assay to detect simultaneous mitotic delay, apoptosis, chromosome breakage and non-disjunction,” Mutation Research, vol. 436, pp. 69–97, 1997.
[42]  M. I. P?rn-Ares, S. C. Chow, J. P. Slotte, and S. Orrenius, “Induction of apoptosis and potentiation of TNF- and FAS-mediated apoptosis in U937 cells by the xanthogenate compound D609,” Experimental Cell Research, vol. 235, no. 1, pp. 48–54, 1997.
[43]  P. C. Vincent and A. Nicholls, “Comparison of the growth of the Ehrlich ascites tumor in male and female mice,” Cancer Research, vol. 27, no. 6, pp. 1058–1065, 1967.
[44]  A. C. Brown, C. Shah, J. Liu, J. T. H. Pham, G. Z. Jian, and M. R. Jadus, “Ginger's (Zingiber officinale Roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro,” Phytotherapy Research, vol. 23, no. 5, pp. 640–645, 2009.
[45]  Y. Nakamura, C. Yoshida, A. Murakami, H. Ohigashi, T. Osawa, and K. Uchida, “Zerumbone, a tropical ginger sesquiterpene, activates phase II drug metabolizing enzymes,” FEBS Letters, vol. 572, no. 1–3, pp. 245–250, 2004.
[46]  A. Murakami, D. Takahashi, T. Kinoshita et al., “Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the α,β-unsaturated carbonyl group is a prerequisite,” Carcinogenesis, vol. 23, no. 5, pp. 795–802, 2002.
[47]  B. Sung, A. Murakami, B. O. Oyajobi, and B. B. Aggarwal, “Zerumbone abolishes RaNKL-induced NF-κB activation, inhibits osteoclastogenesis, and suppresses human breast cancer-induced bone loss in athymic nude mice,” Cancer Research, vol. 69, no. 4, pp. 1477–1484, 2009.
[48]  R. A. Rashid and A. H. L. Pihie, “The antiproliferative effects of Zingiber zerumbet extracts and fractions on the growth of human breast carcinoma cell lines,” Malaysian Journal of Pharmaceutical sciences, vol. 3, pp. 45–52, 2005.
[49]  A. B. H. Adbul, A. S. Al-Zubairi, N. D. Tailan et al., “Anticancer activity of natural compound (Zerumbone) extracted from Zingiber zerumbet in human HeLa cervical cancer cells,” International Journal of Pharmacology, vol. 4, no. 3, pp. 160–168, 2008.
[50]  S. A. Sharifah Sakinah, S. Tri Handayani, and L. P. Azimahtol Hawariah, “Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio,” Cancer Cell International, vol. 7, article 4, 2007.
[51]  S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, “Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation,” Molecular Pharmacology, vol. 69, no. 1, pp. 195–206, 2006.
[52]  R. J. Anto, A. Mukhopadhyay, K. Denning, and B. B. Aggarwal, “Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl,” Carcinogenesis, vol. 23, no. 1, pp. 143–150, 2002.
[53]  R. J. Anto, T. T. Maliekal, and D. Karunagaran, “L-929 cells harboring ectopically expressed RelA resist curcumin-induced apoptosis,” Journal of Biological Chemistry, vol. 275, no. 21, pp. 15601–15604, 2000.
[54]  X.-L. Hou, K. Takahashi, N. Kinoshita et al., “Possible inhibitory mechanism of Curcuma drugs on CYP3A4 in 1α,25 dihydroxyvitamin D3 treated Caco-2 cells,” International Journal of Pharmaceutics, vol. 337, no. 1-2, pp. 169–177, 2007.
[55]  Z. Z. Ba, Y. P. Zheng, H. Zhang, X. Y. Sun, and D. H. Lin, “Potential anti-cancer activity of furanodiene,” Chinese Journal of Cancer Research, vol. 21, no. 2, pp. 154–158, 2009.
[56]  H. Shibuya, Y. Minoru, K. Eisaku, N. Masakazu, and K. Isao, “Qualitative and quantitative analysis of essential oil constituents in various Zedoariae Rhizoma (Gajutsu) by gas liquid chromatography-mass spectrometry,” Yakugaku Zasshi, vol. 106, pp. 212–216, 1986.
[57]  F. Seigo, K. Masanori, U. Akira, A. Yukio, and S. Yasuhisa, “Structure of curzerenone, a new sesquiterpene from Curcuma zedoaria,” Yakugaku Zasshi, vol. 90, pp. 863–869, 1970.
[58]  H. Hikino, K. Agatsuma, and T. Takemoto, “Structure of curzerenone, epicurzerenone, and isofuranogermacrene (curzerene),” Tetrahedron Letters, vol. 9, no. 24, pp. 2855–2858, 1968.
[59]  J. Purkayastha, S. C. Nath, and N. Klinkby, “Essential oil of the rhizome of Curcuma zedoaria (Christm.) rosc. Native to northeast India,” Journal of Essential Oil Research, vol. 18, no. 2, pp. 154–155, 2006.
[60]  M. Aspollah Sukari, T. S. Wah, S. M. Saad et al., “Bioactive sesquiterpenes from Curcuma ochrorhiza and Curcuma heyneana,” Natural Product Research, vol. 24, no. 9, pp. 838–845, 2010.
[61]  B. D. Clarkson and J. H. Burchenal, “Prelimanary screening of antineoplastic drugs,” Progress in Clinical Cancer, vol. 1, p. 625, 1965.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133