全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Maximal Surface Area of a convex set in $\R^n$ with respect to log concave rotation invariant measures

Full-Text   Cite this paper   Add to My Lib

Abstract:

It was shown by K. Ball and F. Nazarov, that the maximal surface area of a convex set in $\mathbb{R}^n$ with respect to the Standard Gaussian measure is of order $n^{\frac{1}{4}}$. In the present paper we establish the analogous result for all rotation invariant log concave probability measures. We show that the maximal surface area with respect to such measures is of order $\frac{\sqrt{n}}{\sqrt[4]{Var|X|} \sqrt{\mathbb{E}|X|}}$, where $X$ is a random vector in $\mathbb{R}^n$ distributed with respect to the measure.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133