全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Zero measure Cantor spectra for continuum one-dimensional quasicrystals

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study Schr\"odinger operators on $\R$ with measures as potentials. Choosing a suitable subset of measures we can work with a dynamical system consisting of measures. We then relate properties of this dynamical system with spectral properties of the associated operators. The constant spectrum in the strictly ergodic case coincides with the union of the zeros of the Lyapunov exponent and the set of non-uniformities of the transfer matrices. This result enables us to prove Cantor spectra of zero Lebesgue measure for a large class of operator families, including many operator families generated by aperiodic subshifts.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133