全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

On the hot spots conjecture for acute triangles

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show that the hot spots conjecture of J. Rauch holds for acute triangles if one of the angles is not larger than $\pi/6$. More precisely, we show that the second Neumann eigenfunction on those acute triangles has no maximum or minimum inside the domain. We first simplify the problem by showing that absence of critical points on two sides implies no critical points inside a triangle. This result applies to any acute triangle and might help prove the conjecture for arbitrary acute triangles. Then we show that there are no critical points on two sides assuming one small angle. We also establish simplicity for the second Neumann eigenvalue for all non-equilateral triangles.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133