全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

A Family of Transverse Link Homologies

Full-Text   Cite this paper   Add to My Lib

Abstract:

We define a homology $\mathcal{H}_N$ for closed braids by applying Khovanov and Rozansky's matrix factorization construction with potential $ax^{N+1}$. Up to a grading shift, $\mathcal{H}_0$ is the HOMFLYPT homology defined in arXiv:math/0505056. We demonstrate that, for $N \geq 1$, $\mathcal{H}_N$ is a $\mathbb{Z}_2\oplus\mathbb{Z}^{\oplus 3}$-graded $\mathbb{Q}[a]$-module that is invariant under transverse Markov moves, but not under negative stabilization/de-stabilization. Thus, for $N\geq 1$, this homology is an invariant for transverse links in the standard contact $S^3$, but not for smooth links. We also discuss the decategorification of $\mathcal{H}_N$ and the relation between $\mathcal{H}_N$ and the $\mathfrak{sl}(N)$ Khovanov-Rozansky homology defined in arXiv:math/0401268.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133