全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Local torsion on abelian surfaces with real multiplication by $\mathbf{Q}(\sqrt{5})$

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fix an integer $d>0$. In 2008, David and Weston showed that, on average, an elliptic curve over $\mathbf{Q}$ picks up a nontrivial $p$-torsion point defined over a finite extension $K$ of the $p$-adics of degree at most $d$ for only finitely many primes $p$. This paper proves an analogous averaging result for principally polarized abelian surfaces over $\mathbf{Q}$ with real multiplication by $\mathbf{Q}(\sqrt{5})$ and a level-$\sqrt{5}$ structure. Furthermore, we indicate how the result on abelian surfaces with real multiplication by $\mathbf{Q}(\sqrt{5})$ relates to the deformation theory of modular Galois representations.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133