全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

On the Bounded Approximation Property in Banach spaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove that the kernel of a quotient operator from an $\mathcal L_1$-space onto a Banach space $X$ with the Bounded Approximation Property (BAP) has the BAP. This completes earlier results of Lusky --case $\ell_1$-- and Figiel, Johnson and Pe\l czy\'nski --case $X^*$ separable. Given a Banach space $X$, we show that if the kernel of a quotient map from some $\mathcal L_1$-space onto $X$ has the BAP then every kernel of every quotient map from any $\mathcal L_1$-space onto $X$ has the BAP. The dual result for $\mathcal L_\infty$-spaces also hold: if for some $\mathcal L_\infty$-space $E$ some quotient $E/X$ has the BAP then for every $\mathcal L_\infty$-space $E$ every quotient $E/X$ has the BAP.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133