|
Mathematics 2013
Dilations and constrained algebrasAbstract: It is well known that unital contractive representations of the disk algebra are completely contractive. Let A denote the subalgebra of the disk algebra consisting of those functions f whose first derivative vanishes at 0. We prove that there are unital contractive representations of A which are not completely contractive, and furthermore provide a Kaiser and Varopoulos inspired example for A and present a characterization of those contractive representations of A which are completely contractive. In the positive direction, for the algebra of rational functions with poles off the distinguished variety V in the bidisk determined by (z-w)(z+w)=0, unital contractive representations are completely contractive.
|