全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

A Uniform Version of a Finiteness Conjecture for CM Elliptic Curves

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let A be an abelian variety defined over a number field F. For a prime number $\ell$, we consider the field extension of F generated by the $\ell$-powered torsion points of A. According to a conjecture made by Rasmussen and Tamagawa, if we require these fields to be both a pro-$\ell$ extension of $F(\mu_{\ell^{\infty}})$ and unramified away from $\ell$, examples are quite rare. Indeed, it is expected that for a fixed dimension and field of definition, there exists such an abelian variety for only a finite number of primes. We prove a uniform version of the conjecture in the case where the abelian varieties are elliptic curves with complex multiplication. In addition, we provide explicit bounds in cases where the number field has degree less than or equal to 100.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133