全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

On the distribution of Jacobi sums

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\mathbf{F}_q$ be a finite field of $q$ elements. For multiplicative characters $\chi_1,\dots, \chi_m$ of $\mathbf{F}_q^\times$, we let $J(\chi_1,\dots, \chi_m)$ denote the Jacobi sum. Nicholas Katz and Zhiyong Zheng showed that for $m=2$, the normalized Jacobi sum $q^{-1/2}J(\chi_1,\chi_2)$ ($\chi_1\chi_2$ nontrivial) is asymptotically equidistributed on the unit circle as $q\to \infty$, when $\chi_1$ and $\chi_2$ run through all nontrivial multiplicative characters of $\mathbf{F}_q^\times$. In this paper, we show a similar property for $m\ge 2$. More generally, we show that the normalized Jacobi sum $q^{-(m-1)/2}J(\chi_1,\dots,\chi_m)$ ($\chi_1\dotsm \chi_m$ nontrivial) is asymptotically equidistributed on the unit circle, when $\chi_1,\dots, \chi_m$ run through arbitrary sets of nontrivial multiplicative characters of $\mathbf{F}_q^\times$ with two of the sets being sufficiently large. The case $m=2$ answers a question of Shparlinski.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133