全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Uniform sup-norm bounds on average for cusp forms of higher weights

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\Gamma\subseteq\mathrm{PSL}_{2}(\mathbb{R})$ be a Fuchsian subgroup of the first kind acting on the upper half-plane $\mathbb{H}$. Consider the $d$-dimensional space of cusp forms $\mathcal{S}_{k}^{\Gamma}$ of weight $2k$ for $\Gamma$, and let $\{f_{1},\ldots,f_{d}\}$ be an orthonormal basis of $\mathcal{S}_{k}^{\Gamma}$ with respect to the Petersson inner product. In this paper we show that the sup-norm of the quantity $S_{k}^{\Gamma}(z):=\sum_{j=1}^{d}| f_{j}(z)|^{2}\,\mathrm{Im}(z)^{2k}$ is bounded as $O_{\Gamma}(k)$ in the cocompact setting, and as $O_{\Gamma}(k^{3/2})$ in the cofinite case, where the implied constants depend solely on $\Gamma$. We also show that the implied constants are uniform if $\Gamma$ is replaced by a subgroup of finite index.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133