全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

On a conjecture of Dekking : The sum of digits of even numbers

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $q\geq 2$ and denote by $s_q$ the sum-of-digits function in base $q$. For $j=0,1,...,q-1$ consider $$# \{0 \le n < N : \;\;s_q(2n) \equiv j \pmod q \}.$$ In 1983, F. M. Dekking conjectured that this quantity is greater than $N/q$ and, respectively, less than $N/q$ for infinitely many $N$, thereby claiming an absence of a drift (or Newman) phenomenon. In this paper we prove his conjecture.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133