全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Heat kernel bounds for elliptic partial differential operators in divergence form with Robin-type boundary conditions II

Full-Text   Cite this paper   Add to My Lib

Abstract:

The principal aim of this short note is to extend a recent result on Gaussian heat kernel bounds for self-adjoint $L^2(\Om; d^n x)$-realizations, $n\in\bbN$, $n\geq 2$, of divergence form elliptic partial differential expressions $L$ with (nonlocal) Robin-type boundary conditions in bounded Lipschitz domains $\Om \subset \bbR^n$, where $$ Lu = - \sum_{j,k=1}^n\partial_j a_{j,k}\partial_k u. $$ The (nonlocal) Robin-type boundary conditions are then of the form $$ \nu\cdot A\nabla u + \Theta\big[u\big|_{\partial\Om}\big]=0 \, \text{on} \, \partial\Omega, $$ where $\Theta$ represents an appropriate operator acting on Sobolev spaces associated with the boundary $\partial \Om$ of $\Om$, and $\nu$ denotes the outward pointing normal unit vector on $\partial\Om$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133