全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

Asymptotics of linear waves and resonances with applications to black holes

DOI: 10.1007/s00220-014-2255-y

Full-Text   Cite this paper   Add to My Lib

Abstract:

We apply the results of arXiv:1301.5633 to describe asymptotic behavior of linear waves on stationary Lorentzian metrics with r-normally hyperbolic trapped sets, in particular Kerr and Kerr-de Sitter metrics with |a|> 1, then the energy norm of the solution is bounded by O(\lambda^{1/2} exp(-(\nu_min - \epsilon)t/2) + \lambda^(-\infty)), for t < C log\lambda, where \nu_min is a natural dynamical quantity. The key tool is a microlocal projector splitting the solution into a component with controlled rate of exponential decay and an O(\lambda exp(-(\nu_min -\epsilon)t) + \lambda^(-\infty)) remainder; this splitting can be viewed as an analog of resonance expansion. Moreover, for the Kerr-de Sitter case we study quasi-normal modes; under a dynamical pinching condition, a Weyl law in a band holds.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133