全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Parametrix for wave equations on a rough background IV: control of the error term

Full-Text   Cite this paper   Add to My Lib

Abstract:

This is the last of a sequence of four papers \cite{param1}, \cite{param2}, \cite{param3}, \cite{param4} dedicated to the construction and the control of a parametrix to the homogeneous wave equation $\square_{\bf g} \phi=0$, where ${\bf g}$ is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes $L^2$ bounds on the curvature tensor ${\bf R}$ of ${\bf g}$ is a major step of the proof of the bounded $L^2$ curvature conjecture proposed in \cite{Kl:2000}, and solved by S. Klainerman, I. Rodnianski and the author in \cite{boundedl2}. On a more general level, this sequence of papers deals with the control of the eikonal equation on a rough background, and with the derivation of $L^2$ bounds for Fourier integral operators on manifolds with rough phases and symbols, and as such is also of independent interest.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133