全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Convergence of a Steepest Descent Algorithm for Ratio Cut Clustering

Full-Text   Cite this paper   Add to My Lib

Abstract:

Unsupervised clustering of scattered, noisy and high-dimensional data points is an important and difficult problem. Tight continuous relaxations of balanced cut problems have recently been shown to provide excellent clustering results. In this paper, we present an explicit-implicit gradient flow scheme for the relaxed ratio cut problem, and prove that the algorithm converges to a critical point of the energy. We also show the efficiency of the proposed algorithm on the two moons dataset.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133