全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Sparse Signal Processing with Frame Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

Many emerging applications involve sparse signals, and their processing is a subject of active research. We desire a large class of sensing matrices which allow the user to discern important properties of the measured sparse signal. Of particular interest are matrices with the restricted isometry property (RIP). RIP matrices are known to enable efficient and stable reconstruction of sufficiently sparse signals, but the deterministic construction of such matrices has proven very difficult. In this thesis, we discuss this matrix design problem in the context of a growing field of study known as frame theory. In the first two chapters, we build large families of equiangular tight frames and full spark frames, and we discuss their relationship to RIP matrices as well as their utility in other aspects of sparse signal processing. In Chapter 3, we pave the road to deterministic RIP matrices, evaluating various techniques to demonstrate RIP, and making interesting connections with graph theory and number theory. We conclude in Chapter 4 with a coherence-based alternative to RIP, which provides near-optimal probabilistic guarantees for various aspects of sparse signal processing while at the same time admitting a whole host of deterministic constructions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133