全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

An approximate isoperimetric inequality for r-sets

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove a vertex-isoperimetric inequality for [n]^(r), the set of all r-element subsets of {1,2,...,n}, where x,y \in [n]^(r) are adjacent if |x \Delta y|=2. Namely, if \mathcal{A} \subset [n]^(r) with |\mathcal{A}|=\alpha {n \choose r}, then the vertex-boundary b(\mathcal{A}) satisfies |b(\mathcal{A})| \geq c\sqrt{\frac{n}{r(n-r)}} \alpha(1-\alpha) {n \choose r}, where c is a positive absolute constant. For \alpha bounded away from 0 and 1, this is sharp up to a constant factor (independent of n and r).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133