n^{-1/2+\eps}, then asymptoticall..." />

全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

On Posa's conjecture for random graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

The famous Posa conjecture states that every graph of minimum degree at least 2n/3 contains the square of a Hamilton cycle. This has been proved for large n by Koml\'os, Sark\"ozy and Szemer\'edi. Here we prove that if p > n^{-1/2+\eps}, then asymptotically almost surely, the binomial random graph G_{n,p} contains the square of a Hamilton cycle. This provides an `approximate threshold' for the property in the sense that the result fails to hold if p< n^{-1/2}.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133