全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Asymptotic Behavior of Local Particles Numbers in Branching Random Walk

DOI: 10.1007/s10959-012-0441-4

Full-Text   Cite this paper   Add to My Lib

Abstract:

Critical catalytic branching random walk on d-dimensional integer lattice is investigated for all d. The branching may occur at the origin only and the start point is arbitrary. The asymptotic behavior, as time grows to infinity, is determined for the mean local particles numbers. The same problem is solved for the probability of particles presence at a fixed lattice point. Moreover, the Yaglom type limit theorem is established for the local number of particles. Our analysis involves construction of an auxiliary Bellman-Harris branching process with six types of particles. The proofs employ the asymptotic properties of the (improper) c.d.f. of hitting times with taboo. The latter notion was recently introduced by the author for a non-branching random walk on an integer lattice.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133