全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Isometric deformations of minimal surfaces in $S^{4}$

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the isometric deformation problem for oriented non simply connected immersed minimal surfaces $f:M \to S^{4}$. We prove that the space of all isometric minimal immersions of $M$ into $S^{4}$ with the same normal curvature function is, within congruences, either finite or a circle. Furthermore, we show that for any compact immersed minimal surface in $S^{4}$ with nontrivial normal bundle there are at most finitely many noncongruent immersed minimal surfaces in $S^{4}$ isometric to it with the same normal curvature function.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133