全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Bipartite stable Poisson graphs on R

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let red and blue points be distributed on $\mathbb{R}$ according to two independent Poisson processes $\mathcal{R}$ and $\mathcal{B}$ and let each red (blue) point independently be equipped with a random number of half-edges according to a probability distribution $\nu$ ($\mu$). We consider translation-invariant bipartite random graphs with vertex classes defined by the point sets of $\mathcal{R}$ and $\mathcal{B}$, respectively, generated by a scheme based on the Gale-Shapley stable marriage for perfectly matching the half-edges. Our main result is that, when all vertices have degree 2 almost surely, then the resulting graph does not contain an infinite component. The two-color model is hence qualitatively different from the one-color model, where Deijfen, Holroyd and Peres have given strong evidence that there is an infinite component. We also present simulation results for other degree distributions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133