全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Hitting times for random walks with restarts

Full-Text   Cite this paper   Add to My Lib

Abstract:

The time it takes a random walker in a lattice to reach the origin from another vertex $x$, has infinite mean. If the walker can restart the walk at $x$ at will, then the minimum expected hitting time $T(x,0)$ (minimized over restarting strategies) is finite; it was called the ``grade'' of $x$ by Dumitriu, Tetali and Winkler. They showed that, in a more general setting, the grade (a variant of the ``Gittins index'') plays a crucial role in control problems involving several Markov chains. Here we establish several conjectures of Dumitriu et al on the asymptotics of the grade in Euclidean lattices. In particular, we show that in the planar square lattice, $T(x,0)$ is asymptotic to $2|x|^2\log|x|$ as $|x| \to \infty$. The proof hinges on the local variance of the potential kernel $h$ being almost constant on the level sets of $h$. We also show how the same method yields precise second order asymptotics for hitting times of a random walk (without restarts) in a lattice disk.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133