全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Density of hyperbolicity for classes of real transcendental entire functions and circle maps

DOI: 10.1215/00127094-2885764

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove density of hyperbolicity in spaces of (i) real transcendental entire functions, bounded on the real line, whose singular set is finite and real and (ii) transcendental self-maps of the punctured plane which preserve the circle and whose singular set (apart from zero and infinity) is contained in the circle. In particular, we prove density of hyperbolicity in the famous Arnol'd family of circle maps and its generalizations, and solve a number of other open problems for these functions, including three conjectures by de Melo, Salom\~ao and Vargas. We also prove density of (real) hyperbolicity for certain families as in (i) but without the boundedness condition. Our results apply, in particular, when the functions in question have only finitely many critical points and asymptotic singularities, or when there are no asymptotic values and the degree of critical points is uniformly bounded.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133