全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pharmacophore Modelling and Synthesis of Quinoline-3-Carbohydrazide as Antioxidants

DOI: 10.1155/2011/592879

Full-Text   Cite this paper   Add to My Lib

Abstract:

From well-known antioxidants agents, we developed a first pharmacophore model containing four common chemical features: one aromatic ring and three hydrogen bond acceptors. This model served as a template in virtual screening of Maybridge and NCI databases that resulted in selection of sixteen compounds. The selected compounds showed a good antioxidant activity measured by three chemical tests: DPPH radical, radical, and superoxide radical scavenging. New synthetic compounds with a good correlation with the model were prepared, and some of them presented a good antioxidant activity. 1. Introduction Free radicals play an important role in the pathogenesis of many diseases, accounting for continuing interest in the identification and development of novel antioxidants that prevent radical-induced damage. In humans, several pathologies involve the overproduction of reactive oxygen species (ROS): these oxygen species such as the superoxide radical anion ( ) and hydrogen peroxide (H2O2) are formed by the partial reduction of molecular oxygen. Formation of the hydroxyl radical ( ), another ROS, is thought to occur through the one-electron reduction of H2O2. This reaction is facilitated by transition metals that are in a reduced valence state (e.g., reduced copper or iron) [1]. Additionally, there are a large number of other reactive species that are formed from the reaction ROS with biological molecules (e.g., polyunsaturated lipids, thiols, and nitric oxide (NO)) [2]. For example, reacts with NO to form peroxynitrite anion (ONOO?), which is unstable at physiological pH and rapidly decomposes. It forms potent nitrating and oxidizing species [3, 4] or hypochlorite (XOCl) that is a powerful oxidant produced by activated neutrophils via the reaction of H2O2 and Cl?, catalysed by the heme enzyme myeloperoxidase [5]. A lot of natural and synthetic products like quercetin 1, curcumine 2, resveratrol 3, Trolox 4, and N-acetylcystein 5 are known for their antioxidant activity [6–10]. Some heterocyclic compounds, either natural (phytoestrogens) or obtained by synthesis, having coumarin or quinoline rings, were studied for their biological activity. They are used especially as radicals scavenger like quercetol and coumestrol [11, 12] or the copper or iron chelating molecules such as clioquinol [13, 14]. After first studies realized in our laboratory [15–17] on new compounds with quinoline and coumarin structures and with the aim of discovering a very strong antioxidant, we decided to introduce in our research the three-dimentional generation and database searching. The

References

[1]  C. Behl and B. Moosmann, “Antioxidant neuroprotection in Alzheimer's disease as preventive and therapeutic approach,” Free Radical Biology and Medicine, vol. 33, no. 2, pp. 182–191, 2002.
[2]  D. R. Coulson, B. Siobhan, J. Cathal, P. Passmore, and J. A. Johnston, “ -Secretase activity in human platelets,” Neurobiology of Aging, vol. 25, p. 358, 2004.
[3]  H. Y. Zhang, D. P. Yang, and G. Y. Tang, “Multipotent antioxidants: from screening to design,” Drug Discovery Today, vol. 11, no. 15-16, pp. 749–754, 2006.
[4]  B. J. Day, “Catalytic antioxidants: a radical approach to new therapeutics,” Drug Discovery Today, vol. 9, no. 13, pp. 557–566, 2004.
[5]  A. J. Kettle and C. C. Winterbourn, “Myeloperoxidase: a key regulator of neutrophil oxidant product,” Redox Report, vol. 3, no. 1, pp. 3–15, 1997.
[6]  C. Desmarchelier, G. Ciccia, and J. Coussio, “Recent advances in the search for antioxidant activity in South American plants,” Studies in Natural Products Chemistry, vol. 22, pp. 343–367, 2000.
[7]  P. Scartezzini and E. Speroni, “Review on some plants of Indian traditional medicine with antioxidant activity,” Journal of Ethnopharmacology, vol. 71, no. 1-2, pp. 23–43, 2000.
[8]  A. Kumar, R. K. Kaundal, S. Iyer, and S. S. Sharma, “Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy,” Life Sciences, vol. 80, no. 13, pp. 1236–1244, 2007.
[9]  N. K. Hall, T. M. Chapman, H. J. Kim, and D. B. Min, “Antioxidant mechanisms of Trolox and ascorbic acid on the oxidation of riboflavin in milk under light,” Food Chemistry, vol. 118, no. 3, pp. 534–539, 2010.
[10]  O. I. Aruoma, B. Halliwell, B. M. Hoey, and J. Butler, “The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid,” Free Radical Biology and Medicine, vol. 6, no. 6, pp. 593–597, 1989.
[11]  I. B. Afanas’ev, A. I. Dorozhko, A. V. Brodskii, V. A. Kostyuk, and A. I. Potapovitch, “Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation,” Biochemical Pharmacology, vol. 38, no. 11, pp. 1763–1769, 1989.
[12]  J. H. Mitchell, P. T. Gardner, D. B. McPhail, P. C. Morrice, A. R. Collins, and G. G. Duthie, “Antioxidant efficacy of phytoestrogens in chemical and biological model systems,” Archives of Biochemistry and Biophysics, vol. 360, no. 1, pp. 142–148, 1998.
[13]  V. Moret, Y. Laras, N. Pietrancosta et al., “1, -Xylyl bis-1,4,8,11-tetraaza cyclotetradecane: a new potential copper chelator agent for neuroprotection in Alzheimer's disease. Its comparative effects with clioquinol on rat brain copper distribution,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 12, pp. 3298–3301, 2006.
[14]  L. Benvenisti-Zarom, J. Chempand, and R. F. Regan, “The oxidative neurotoxicity of clioquinol,” Neuropharmacology, vol. 49, no. 5, pp. 687–694, 2005.
[15]  B. Refouvelet, C. Guyon, Y. Jacquot et al., “Synthesis of 4-hydroxycoumarin and 2,4-quinolinediol derivatives and evaluation of their effects on the viability of HepG2 cells and human hepatocytes culture,” European Journal of Medicinal Chemistry, vol. 39, no. 11, pp. 931–937, 2004.
[16]  Y. Jacquot, A. Cleeren, I. Laios et al., “Pharmacological profile of 6,12-dihydro-3-methoxy-1-benzopyrano[3,4-b] [1,4]benzothiazin-6-one, a novel human estrogen receptor agonist,” Biological and Pharmaceutical Bulletin, vol. 25, no. 3, pp. 335–341, 2002.
[17]  L. Ismaili, A. Nadaradjane, L. Nicod et al., “Synthesis and antioxidant activity evaluation of new hexahydropyrimido[5,4-c]quinoline-2,5-diones and 2-thioxohexahydropyrimido[5,4-c]quinoline-5-ones obtained by Biginelli reaction in two steps,” European Journal of Medicinal Chemistry, vol. 43, no. 6, pp. 1270–1275, 2008.
[18]  O. Dror, A. Shulman-Peleg, R. Nussinov, and H. J. Wolfson, “Predicting molecular interactions in silico—I. A guide to pharmacophore identification and its applications to drug design,” Current Medicinal Chemistry, vol. 11, no. 1, pp. 71–90, 2004.
[19]  P. D. Lyne, P. W. Kenny, D. A. Cosgrove et al., “Identification of compounds with nanomolar binding affinity for checkpoint kinase-1 using knowledge-based virtual screening,” Journal of Medicinal Chemistry, vol. 47, no. 8, pp. 1962–1968, 2004.
[20]  A. Hirashima, M. Morimoto, H. Ohta, E. Kuwano, E. Taniguchi, and M. Eto, “Three-dimensional common-feature hypotheses for octopamine agonist1-arylimidazolidine-2-thiones,” International Journal of Molecular Sciences, vol. 3, no. 2, pp. 56–68, 2002.
[21]  R. Amarowicz, R. B. Pegg, P. Rahimi-Moghaddam, B. Barl, and J. A. Weil, “Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies,” Food Chemistry, vol. 84, no. 4, pp. 551–562, 2004.
[22]  P. Siddhuraju and K. Becker, “The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp.) seed extracts,” Food Chemistry, vol. 101, no. 1, pp. 10–19, 2006.
[23]  S. K. Chung, T. Osawa, and S. Kawakishi, “Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra),” Bioscience, Biotechnology and Biochemistry, vol. 61, no. 1, pp. 118–123, 1997.
[24]  M. Nishikimi, N. A. Rao, and K. Yagi, “The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen,” Biochemical and Biophysical Research Communications, vol. 46, no. 2, pp. 849–854, 1972.
[25]  L. Isma?li, B. Refouvelet, and J. F. Robert, “Synthesis of new pyrazolo[4,3-c]quinolin-3-one derivatives and some oxazolo[4,5-c]quinoline-2,4-diones,” Journal of Heterocyclic Chemistry, vol. 36, no. 3, pp. 719–722, 1999.
[26]  T. Hatano, H. Kagawa, T. Yasuhara, and T. Okuda, “Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects,” Chemical and Pharmaceutical Bulletin, vol. 36, no. 6, pp. 2090–2097, 1988.
[27]  B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, “A program for macromolecular energy, minimization, and dynamics calculations,” Journal of Computational Chemistry, vol. 4, pp. 187–214, 1983.
[28]  A. Smellie, S. L. Teig, and P. Towbin, “Poling: promoting conformational variation,” Journal of Computational Chemistry, vol. 16, pp. 171–187, 1995.
[29]  J. Greene, S. Kahn, H. Savoj, P. Sprague, and S. Teig, “Chemical function queries for 3D database search,” Journal of Chemical Information and Computer Sciences, vol. 34, no. 6, pp. 1297–1308, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133