全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Asymptotic study of subcritical graph classes

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a unified general method for the asymptotic study of graphs from the so-called "subcritical"$ $ graph classes, which include the classes of cacti graphs, outerplanar graphs, and series-parallel graphs. This general method works both in the labelled and unlabelled framework. The main results concern the asymptotic enumeration and the limit laws of properties of random graphs chosen from subcritical classes. We show that the number $g_n/n!$ (resp. $g_n$) of labelled (resp. unlabelled) graphs on $n$ vertices from a subcritical graph class ${\cG}=\cup_n {\cG_n}$ satisfies asymptotically the universal behaviour $$ g_n = c n^{-5/2} \gamma^n (1+o(1)) $$ for computable constants $c,\gamma$, e.g. $\gamma\approx 9.38527$ for unlabelled series-parallel graphs, and that the number of vertices of degree $k$ ($k$ fixed) in a graph chosen uniformly at random from $\cG_n$, converges (after rescaling) to a normal law as $n\to\infty$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133