全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

On the critical parameter of interlacement percolation in high dimension

DOI: 10.1214/10-AOP545

Full-Text   Cite this paper   Add to My Lib

Abstract:

The vacant set of random interlacements on ${\mathbb{Z}}^d$, $d\ge3$, has nontrivial percolative properties. It is known from Sznitman [Ann. Math. 171 (2010) 2039--2087], Sidoravicius and Sznitman [Comm. Pure Appl. Math. 62 (2009) 831--858] that there is a nondegenerate critical value $u_*$ such that the vacant set at level $u$ percolates when $uu_*$. We derive here an asymptotic upper bound on $u_*$, as $d$ goes to infinity, which complements the lower bound from Sznitman [Probab. Theory Related Fields, to appear]. Our main result shows that $u_*$ is equivalent to $\log d$ for large $d$ and thus has the same principal asymptotic behavior as the critical parameter attached to random interlacements on $2d$-regular trees, which has been explicitly computed in Teixeira [Electron. J. Probab. 14 (2009) 1604--1627].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133