全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Range of Berezin Transform

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\ds dA=\frac{dxdy}\pi$ denote the normalized Lebesgue area measure on the unit disk $\disk$ and $u$, a summable function on $\disk$. $$B(u)(z)=\int_\disk u(\zeta)\frac{(1-|z|^2)^2}{|1-\zeta\oln z|^4}dA(\zeta)$$ is called the Berezin transform of $u$. Ahern \cite{a} described all the possible triples $\{u,f,g\}$ for which $$B(u)(z)=f(z)\oln g(z)$$ where both $f,g$ are holomorphic in $\disk$. This result was crucial in solving a version of the zero product problem for Toeplitz operators on the Bergman space. The natural next question was to describe all functions in the range of Berezin Transform which are of the form $$\sum_{i=1}^Nf_i\oln g_i$$ where $f_i,g_i$ are all holomorphic in $\disk$. We shall give a complete description of all such $u$ and the corresponding $f_i,g_i,1\leq i\leq N$. Further we give very simple proof of the result of Ahern \cite{a} and the recent results of \v{C}u\v{c}kovi\'c and Li \cite{bz} where they tackle the special case when N=2 and $g_2=z^n$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133