全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Harmonic maps between annuli on Riemann surfaces

DOI: 10.1007/s11856-011-0026-4

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\rho_\Sigma=h(|z|^2)$ be a metric in a Riemann surface $\Sigma$, where $h$ is a positive real function. Let $\mathcal H_{r_1}=\{w=f(z)\}$ be the family of univalent $\rho_\Sigma$ harmonic mapping of the Euclidean annulus $A(r_1,1):=\{z:r_1< |z| <1\}$ onto a proper annulus $A_\Sigma$ of the Riemann surface $\Sigma$, which is subject of some geometric restrictions. It is shown that if $A_{\Sigma}$ is fixed, then $\sup\{r_1: \mathcal H_{r_1}\neq \emptyset \}<1$. This generalizes the similar results from Euclidean case. The cases of Riemann and of hyperbolic harmonic mappings are treated in detail. Using the fact that the Gauss map of a surface with constant mean curvature (CMC) is a Riemann harmonic mapping, an application to the CMC surfaces is given (see Corollary \ref{cor}). In addition some new examples of hyperbolic and Riemann radial harmonic diffeomorphisms are given, which have inspired some new J. C. C. Nitsche type conjectures for the class of these mappings.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133