全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

A q-rious positivity

DOI: 10.1007/s00010-010-0055-9

Full-Text   Cite this paper   Add to My Lib

Abstract:

The $q$-binomial coefficients $\qbinom{n}{m}=\prod_{i=1}^m(1-q^{n-m+i})/(1-q^i)$, for integers $0\le m\le n$, are known to be polynomials with non-negative integer coefficients. This readily follows from the $q$-binomial theorem, or the many combinatorial interpretations of $\qbinom{n}{m}$. In this note we conjecture an arithmetically motivated generalisation of the non-negativity property for products of ratios of $q$-factorials that happen to be polynomials.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133