全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Decomposition of homogeneous polynomials with low rank

DOI: 10.1007/s00209-011-0907-6

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $F$ be a homogeneous polynomial of degree $d$ in $m+1$ variables defined over an algebraically closed field of characteristic zero and suppose that $F$ belongs to the $s$-th secant varieties of the standard Veronese variety $X_{m,d}\subset \mathbb{P}^{{m+d\choose d}-1}$ but that its minimal decomposition as a sum of $d$-th powers of linear forms $M_1, ..., M_r$ is $F=M_1^d+... + M_r^d$ with $r>s$. We show that if $s+r\leq 2d+1$ then such a decomposition of $F$ can be split in two parts: one of them is made by linear forms that can be written using only two variables, the other part is uniquely determined once one has fixed the first part. We also obtain a uniqueness theorem for the minimal decomposition of $F$ if the rank is at most $d$ and a mild condition is satisfied.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133