全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

The Coolidge-Nagata conjecture

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $E\subseteq \mathbb{P}^2$ be a complex rational cuspidal curve contained in the projective plane. The Coolidge-Nagata conjecture asserts that $E$ is Cremona equivalent to a line, i.e. it is mapped onto a line by some birational transformation of $\mathbb{P}^2$. In arXiv:1405.5917 the second author analyzed the log minimal model program run for the pair $(X,\frac{1}{2}D)$, where $(X,D)\to (\mathbb{P}^2,E)$ is a minimal resolution of singularities, and as a corollary he established the conjecture in case when more than one irreducible curve in $\mathbb{P}^2\setminus E$ is contracted by the process of minimalization. We prove the conjecture in the remaining cases.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133