全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The following sharpening of Tur\'an's theorem is proved. Let $T_{n,p}$ denote the complete $p$--partite graph of order $n$ having the maximum number of edges. If $G$ is an $n$-vertex $K_{p+1}$-free graph with $e(T_{n,p})-t$ edges then there exists an (at most) $p$-chromatic subgraph $H_0$ such that $e(H_0)\geq e(G)-t$. Using this result we present a concise, contemporary proof (i.e., one applying Szemer\'edi's regularity lemma) for the classical stability result of Simonovits.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133