全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2015 

The Grassmann algebra in arbitrary characteristic and generalized sign

Full-Text   Cite this paper   Add to My Lib

Abstract:

We define a generalization $\mathfrak{G}$ of the Grassmann algebra $G$ which is well-behaved over arbitrary commutative rings $C$, even when $2$ is not invertible. In particular, this enables us to define a notion of superalgebras that does not become degenerate in such a setting. Using this construction we are able to provide a basis of the non-graded multilinear identities of the free superalgebra with supertrace, valid over any ring. We also show that all identities of $\mathfrak{G}$ follow from the Grassmann identity, and explicitly give its co-modules, which turn out to be generalizations of the sign representation. In particular, we show that the co-module is a free $C$-module of rank $2^{n-1}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133