全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

An Upper Bound on the Convergence Rate of a Second Functional in Optimal Sequence Alignment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consider finite sequences $X_{[1,n]}=X_1\dots X_n$ and $Y_{[1,n]}=Y_1\dots Y_n$ of length $n$, consisting of i.i.d.\ samples of random letters from a finite alphabet, and let $S$ and $T$ be chosen i.i.d.\ randomly from the unit ball in the space of symmetric scoring functions over this alphabet augmented by a gap symbol. We prove a probabilistic upper bound of linear order in $n^{0.75}$ for the deviation of the score relative to $T$ of optimal alignments with gaps of $X_{[1,n]}$ and $Y_{[1,n]}$ relative to $S$. It remains an open problem to prove a lower bound. Our result contributes to the understanding of the microstructure of optimal alignments relative to one given scoring function, extending a theory begun by the first two authors.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133