全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Worst singularities of plane curves of given degree

Full-Text   Cite this paper   Add to My Lib

Abstract:

I prove that $\frac{2}{d}$, $\frac{2d-3}{(d-1)^2}$, $\frac{2d-1}{d(d-1)}$, $\frac{2d-5}{d^2-3d+1}$ and $\frac{2d-3}{d(d-2)}$ are the smallest log canonical thresholds of reduced plane curves of degree $d\geqslant 3$. I describe reduced plane curves of degree $d$ whose log canonical thresholds are these numbers. I prove that every reduced plane curve of degree $d\geqslant 4$ whose log canonical threshold is smaller than $\frac{5}{2d}$ is GIT-unstable for the action of the group $\mathrm{PGL}_3(\mathbb{C})$, and I describe GIT-semistable reduced plane curves with log canonical thresholds $\frac{5}{2d}$. I prove that $\frac{2}{d}$, $\frac{2d-3}{(d-1)^2}$, $\frac{2d-1}{d(d-1)}$, $\frac{2d-5}{d^2-3d+1}$ and $\frac{2d-3}{d(d-2)}$ are the smallest values of the $\alpha$-invariant of Tian of smooth surfaces in $\mathbb{P}^3$ of degree $d\geqslant 3$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133