全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Positivity of Hochster Theta

Full-Text   Cite this paper   Add to My Lib

Abstract:

M. Hochster defines an invariant namely $\Theta(M,N)$ associated to two finitely generated module over a hyper-surface ring $R=P/f$, where $P=k\{x_0,...,x_n\}$ or $k[X_0,...,x_n]$, for $k$ a field and $f$ is a germ of holomorphic function or a polynomial, having isolated singularity at $0$. This invariant can be lifted to the Grothendieck group $G_0(R)_{\mathbb{Q}}$ and is compatible with the chern character and cycle class map, according to the works of W. Moore, G. Piepmeyer, S. Spiroff, M. Walker. They prove that it is semi-definite when $f$ is a homogeneous polynomial, using Hodge theory on Projective varieties. It is a conjecture that the same holds for general isolated singularity $f$. We give a proof of this conjecture using Hodge theory of isolated hyper-surface singularities when $k=\mathbb{C}$. We apply this result to give a positivity criteria for intersection multiplicty of proper intersections in the variety of $f$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133