全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

The Liouville property and Hilbertian compression

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lower bound on the equivariant Hilbertian compression exponent $\alpha$ are obtained using random walks. More precisely, if the probability of return of the simple random walk is $\succeq \textrm{exp}(-n^\gamma)$ in a Cayley graph then $\alpha \geq (1-\gamma)/(1+\gamma)$. This motivates the study of further relations between return probability, speed, entropy and volume growth. For example, if $|B_n| \preceq e^{n^\nu}$ then the speed is $\preceq n^{1/(2-\nu)}$. Under a strong assumption on the off-diagonal decay of the heat kernel, the lower bound on compression improves to $\alpha \geq 1-\gamma$. Using a result from Naor and Peres on compression and the speed of random walks, this yields very promising bounds on speed and implies the Liouville property if $\gamma <1/2$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133