全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Exponential Family Techniques for the Lognormal Left Tail

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $X$ be lognormal$(\mu,\sigma^2)$ with density $f(x)$, let $\theta>0$ and define ${L}(\theta)=E e^{-\theta X}$. We study properties of the exponentially tilted density (Esscher transform) $f_\theta(x) =e^{-\theta x}f(x)/{L}(\theta)$, in particular its moments, its asymptotic form as $\theta\to\infty$ and asymptotics for the Cram\'er function; the asymptotic formulas involve the Lambert W function. This is used to provide two different numerical methods for evaluating the left tail probability of lognormal sum $S_n=X_1+\cdots+X_n$: a saddlepoint approximation and an exponential twisting importance sampling estimator. For the latter we demonstrate the asymptotic consistency by proving logarithmic efficiency in terms of the mean square error. Numerical examples for the c.d.f.\ $F_n(x)$ and the p.d.f.\ $f_n(x)$ of $S_n$ are given in a range of values of $\sigma^2,n,x$ motivated from portfolio Value-at-Risk calculations.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133