全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2014 

Front fluctuations for the stochastic Cahn-Hilliard equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the Cahn-Hilliard equation in one space dimension, perturbed by the derivative of a space and time white noise of intensity $\epsilon^{\frac 12}$, and we investigate the effect of the noise, as $\epsilon \to 0$, on the solutions when the initial condition is a front that separates the two stable phases. We prove that, given $\gamma< \frac 23$, with probability going to one as $\epsilon \to 0$, the solution remains close to a front for times of the order of $\epsilon^{-\gamma}$, and we study the fluctuations of the front in this time scaling. They are given by a one dimensional continuous process, self similar of order $\frac 14$ and non Markovian, related to a fractional Brownian motion and for which a couple of representations are given.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133