全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Research on Analysis Method of Traffic Congestion Mechanism Based on Improved Cell Transmission Model

DOI: 10.1155/2012/854654

Full-Text   Cite this paper   Add to My Lib

Abstract:

To analyze the spreading regularity of the initial traffic congestion, the improved cell transmission model (CTM) is proposed to describe the evolution mechanism of traffic congestion in regional road grid. Ordinary cells and oriented cells are applied to render the crowd roads and their adjacent roads. Therefore the traffic flow could be simulated by these cells. Resorting to the proposed model, the duration of the initial traffic congestion could be predicted and the subsequent secondary congestion could be located. Accordingly, the spatial diffusion of traffic congestion could be estimated. At last, taking a road network region of Hangzhou city as an example, the simulation experiment is implemented to verify the proposed method by PARAMICS software. The result shows that the method could predict the duration of the initial congestion and estimate its spatial diffusion accurately. 1. Introduction The urban traffic congestion has been becoming a more and more serious issue, especially in China. Traffic congestion is a typical traffic condition with a dynamic course by time. The congestion generating mechanisms analysis considering both time and space scale helps to illustrate the dynamic changing characteristic of the traffic flow that eventually leads to the congestion. Many scholars had studied the urban traffic congestion by cell transmission model (CTM) at the 1990s [1–3]. Some scholars, such as Szeto, Jia Bin et al., had researched CTM model to have a good performance in simulating the typical dynamic characteristics of traffic flow, such as the formation of shock waves, traffic congestion, and the dynamic evolution rule of node combined by Multiroad [4, 5]. Certainly, other scholars, such as Chen Qian, ZHOU Xi-peng, and YANG Zhao-shen, applied CTM model to the models of traffic flow spread on network such as traffic bottleneck recognition and modeling for traffic events duration time and traffic recovery time [6–10]. In previous studies, the spatial diffusion estimating and duration predicting of traffic congestion are separately supposed as both independent issues on congestion. However, both issues usually affect and restrain one another. Actually they have remarkable relationship in time and space scale. Therefore, the analysis method based on our proposed improved CTM model will give a new solution to track traffic congestion considering both time and space scale. And the research in this paper promises to prevent and relieve traffic congestion and improve the utilization efficiency of the road resources. This paper is organized as follows.

References

[1]  C. F. Daganzon, “The lagged cell transmission model,” in Transportation an Traffic Theory, A. Ceder, Ed., pp. 81–103, Ergamon-Elsevier, New York, NY, USA, 1999.
[2]  C. F. Daganzo, “The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory,” Transportation Research Part B, vol. 28, no. 4, pp. 269–287, 1994.
[3]  W. Y. Szeto, “Enhanced lagged cell-transmission model for dynamic traffic assignment,” Transportation Research Record, no. 2085, pp. 76–85, 2008.
[4]  L. Mu?oz, X. Sun, R. Horowitz, and L. Alvarez, “Piecewise-linearized cell transmission model and parameter calibration methodology,” Transportation Research Record, no. 1965, pp. 183–191, 2006.
[5]  B. Jia, Z. Y. Gao, K. P. Li, and X. G. Li, Models and Simulations of Traffic System Based on Theory of Cellular Automaton, Science Press, Beijing, China, 2007.
[6]  Z. S. Yang, X. Y. Gao, and D. Sun, “Cellular automata model of urban traffic emergency evacuation and rescue,” Journal of Traffic and Transportation Engineering, vol. 11, no. 2, pp. 114–120, 2011.
[7]  J. C. Long, Studies on Congestion Propagation Properties and Dissipation Control Strategies of Urban Road Traffic, Beijing Jiaotong university, 2009.
[8]  Q. Chen and W. Wang, “Application of fuzzy optimization method based on CTM for traffic trunk line control under special events,” Journal of Southeast University (Natural Science Edition), vol. 38, no. 5, pp. 861–865, 2008.
[9]  B. S. Kerner, H. Rehborn, M. Aleksic, and A. Haug, “Recognition and tracking of spatial-temporal congested traffic patterns on freeways,” Transportation Research Part C, vol. 12, no. 5, pp. 369–400, 2004.
[10]  A. P. Lian, Z. Y. Gao, and J. C. Long, “Dynamic user optimal assignment problem of link variables based on the cell transmission model,” Acta Automatica Sinica, vol. 33, no. 8, pp. 852–859, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133